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Abstract
Learning video representation is not a trivial task,
as video is an information-intensive media where
each frame does not exist independently. Local-
ly, a video frame is visually and semantically sim-
ilar with its adjacent frames. Holistically, a video
has its inherent structure—the correlations among
video frames. For example, even the frames far
from each other may also hold similar semantic-
s. Such context information is therefore impor-
tant to characterize the intrinsic representation of
a video frame. In this paper, we present a novel
approach to learn the deep video representation by
exploring both local and holistic contexts. Specifi-
cally, we propose a triplet sampling mechanism to
encode the local temporal relationship of adjacen-
t frames based on their deep representations. In
addition, we incorporate the graph structure of the
video, as a priori, to holistically preserve the in-
herent correlations among video frames. Our ap-
proach is fully unsupervised and trained in an end-
to-end deep convolutional neural network architec-
ture. By extensive experiments, we show that our
learned representation can significantly boost sev-
eral video recognition tasks (retrieval, classifica-
tion, and highlight detection) over traditional video
representations.

1 Introduction
Video has become ubiquitous. This has encouraged the devel-
opment of advanced techniques to video understanding for a
wide variety of applications. One of the fundamental prob-
lems is how to learn a “good” representation for a video. A
valid question is then what are the generic priors for learn-
ing the intrinsic representation of a video that can deal with
complex variations without specifying any task.

In general, video is a sequence of frames with large con-
tent variance and complexity. There are two kinds of con-
textual information to be exploited for learning video repre-
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Figure 1: Two generic priors for learning video representations: lo-
cal temporal coherence and holistic graph structure preservation.
Taking the feature learning for frame st as an example, the temporal
coherence can preserve the visual and semantical similarity among
adjacent frames, shown in the same color, i.e., {st−1, st, st+1}.
Moreover, we can observe some non-adjacent frames also contain
similar semantics with st, e.g., st−p−1, st−p, and st−p+1. Such in-
herent semantic correlations is expected to be encoded for learning
the representation for the frame st.

sentations: local temporal coherence and holistic graph struc-
ture. First, the adjacent video frames are usually visually and
semantically coherent. This can be regarded as an intrinsic
property of video to learn a possibly “good” representation
with respect to the large variations in a video. Such tempo-
ral coherence context has been successfully applied to met-
ric learning, as a regularizer in both the supervised learning
[Mobahi et al., 2009] and unsupervised learning [Wiskott and
Sejnowski, 2002].

Second, in addition to the local temporal coherence, a
video has its inherent structure over the entire sequence where
the frames far from each other may also exhibit similar se-
mantics. Such holistic structure can be viewed as a graph
constructed on all the video frames. In this context, learn-
ing the graph structure amounts to estimating the similarity
matrix on the representations of video frames. It offers the
advantages with respect to learning directly from the video
and reveals the correlations between video frames. There-
fore, another generic prior for learning the “good” video rep-
resentations is to preserve the graph structure estimated on
the learned representations of video frames.

Figure 1 shows an intuitive example of the two priors in
video representation learning. By jointly integrating the tem-
poral coherence and graph structure preservation, we present
a novel Temporal and Graph-structured Feature Learning
(TGFL) approach to learning the representations of video
frames. Specifically, a video is represented by a sequence
of frames. The temporal coherence is then characterized with
a set of frame triplets. Each triplet contains a query frame,
a positive frame, and a negative frame, where the positive



frame is visually similar with and adjacent to the query frame
while the negative one is dissimilar with and far from the
query. Meanwhile, the graph structure of the video is es-
timated on a similarity matrix among all the video frames.
The spirit of TGFL is to learn the video representation in a
deep architecture by simultaneously exploiting the local rela-
tive similarity ordering in the triplets and preserving the holis-
tic structure in the entire video. It is worth noticing that our
proposed approach to feature learning is generic and appli-
cable to any other sequence data. Different from previous
methods for video feature learning which predominantly fo-
cus on modeling temporal coherence [Goroshin et al., 2014;
Ranzato et al., 2014; Srivastava et al., 2015], we explore both
the local (temporal coherence) and holistic (graph structure)
contexts to learn the intrinsic video representation.

The contributions of this paper are as follows. First, we s-
tudy the generic priors which lead to a “good” representation
of video frames. Second, we propose a novel approach for
learning frame-level video representations in a deep network
architecture, which aims to incorporate both temporal coher-
ence and graph structure preservation. Our approach is fully
unsupervised and trained in an end-to-end fashion. Specif-
ically, we design a novel deep neural network architecture
integrating the proposed temporal and graph-structured loss
layer to optimize the whole deep convolutional neural net-
work (DCNN) structure. Third, we demonstrate by extensive
experiments that our proposed feature learning outperforms
several state-of-the-art representations in three video recog-
nition tasks.

2 Related Work
We group the related work into two categories: feature learn-
ing for videos, and graph structure preservation models. The
first category reviews the research in feature learning for
videos by exploiting spatio-temporal properties, while the
second investigates a variety of models considering graph
structure preservation.

Feature learning for videos. Learning feature repre-
sentation for videos is a fundamental yet challenging prob-
lem. Le et al. use Independent Subspace Analysis (ISA)
to learn spatio-temporal feature from unlabeled video data
[Le et al., 2011]. Wiskott and others propose that the invari-
ant feature representation can be learnt by maximizing the
temporal coherence in video [Wiskott and Sejnowski, 2002;
Hurri and Hyvärinen, 2003]. Recently, the work in [Goroshin
et al., 2014] utilizes the auto-encoder to learn video features
with a temporally and semantically coherence metric. In
addition, the Recurrent Neural Networks (RNN) which can
model sequence dynamics is also explored for feature learn-
ing in video. In [Ranzato et al., 2014], the proposed RNN-
based model for feature learning in video explored both s-
patial and temporal correlations of videos. A Long Short
Term Memory (LSTM) Encoder-Decoder model is proposed
for feature representation learning and the prediction of video
frame [Srivastava et al., 2015].

Graph structure preservation models. Graph structure
preservation models aim to preserve the global topological
properties of the input graph-structured data, which have

shown effective for dimensionality reduction [Tenenbaum et
al., 2000; Yan et al., 2007], semi-supervised learning [Melac-
ci and Belkin, 2011; Qi et al., 2012], image search [Pan et
al., 2014], video annotation [Moxley et al., 2010] and trans-
fer learning [Long et al., 2014]. In addition, there are also
several works considering such graph structure in the deep
network architecture. For example, the work in [Bruna et al.,
2013] exploits the global structure of graph with the spectrum
of Graph Laplacian to generalize convolution operator in the
CNN architectures. Furthermore, the spectral network intro-
duced in [Bruna et al., 2013] is extended to deep network ar-
chitectures with small learning complexity on non-Euclidean
domains by incorporating a graph estimation procedure.

Summary. We focus on learning feature representation
for video. Different from previous methods for video feature
learning which predominantly focus on modeling temporal
coherence, we explore both the local (temporal coherence)
and holistic (graph structure) contexts to learn the intrinsic
video representation.

3 Approach: Temporal and Graph-structured
Feature Learning

Our proposed Temporal and Graph-structured Feature Learn-
ing (TGFL) approach is to build an embedding space in which
the feature representations for frames can be encoded with
both temporal coherence and graph structure contexts. The
training of TGFL is performed by simultaneously minimiz-
ing the triplet ranking loss to characterize temporal coherence
among adjacent frames, and preserving the holistic graph
structure relationships among all the video frames. There-
fore, the objective function of the TGFL consists of of two
components, i.e., triplet ranking loss based on the sampled
triplets and the graph structure preservation in videos.

Figure 2 shows the overview of our approach. In the fol-
lowing, we will first define the video sequence and the rep-
resentation of each video frame in the embedding space, fol-
lowed by constructing the two learning components (tempo-
ral coherence and graph structure) for feature learning. It is
worth noticing that to precisely measure the temporal coher-
ence, we present a triplet sampling mechanism from the view-
point of mutual reinforcement between the temporal structure
and visual similarity among frames. Then, we formulate the
joint objective function and provide the optimization strate-
gy in a deep learning framework. Specifically, we design a
novel deep neural network architecture consisting of multi-
ple convolution-pooling layers and a fully connected layer,
followed by the proposed temporal and graph-structured loss
layer to optimize the whole DCNN structure.

3.1 Notation
As our feature learning approach is unsupervised, a large col-
lection of videos is desired. Suppose we have a collection of
videos V where each video v ∈ V can be represented as a
temporal sequence of N sampled frames (uniform sampling)
{s1, s2, . . . , sN}. Let S denote the frame space. The goal of
feature learning for video frames is to construct a mapping
f : S → Rd, such that each frame can be mapped into a d-
dimensional embedding space. Note that with the mapping
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Figure 2: The overview of our TGFL framework for learning in-
trinsic video representation (better viewed in color). The tempo-
ral coherence is to characterize the relative temporal relationships
through frame triplet set, while the holistic graph structure is to pre-
serve the inherent correlations among frames. Both of the two priors
are simultaneously exploited in our designed temporal and graph-
structured loss layer, which is designed on the top of full connected
fc6 layer in AlexNet. Our feature learning is fully unsupervised and
trained in an end-to-end fashion.

function f(s), the entire sequential frames of video v are pro-
jected into this embedding space, which are represented as
F = [f1, f2, . . . , fN ]> ∈ RN×d.

3.2 Modeling Temporal Coherence
Given a sequence of frames, we aim to exploit the tempo-
ral coherence as one generic prior to learn effective repre-
sentations for video frames. The prior is that the temporal-
ly adjacent frames are more likely to be semantically similar
than those non-adjacent frames. Therefore, when measuring
the representations of video frames in the embedding space,
the similarity between a pair of temporally adjacent frames
should be higher than that of the pair of non-adjacent frames.

We first define the similarity of two frames fi and fj ac-
cording to their Euclidean distances in the embedding space:

D (fi, fj) = ‖fi − fj‖22 . (1)

Then, we characterize the temporal coherence of a temporal
sequence by the ranking loss measured on a set of triplets,
which can be easily fed into the feature learning framework.
Denote T as the set of triplets generated from temporal se-
quence, and each triplet as 〈fi, f+j , f−m〉 consisting of the query
frame fi, positive frame f+j and negative frame f−m. Accord-
ingly, the triplet ranking loss is defined by

`triplet(fi, f
+
j , f

−
m) = max{0, D(fi, f

+
j )−D(fi, f

−
m) + 1} (2)

The triplet ranking loss exploits the margin ranking loss [Her-
brich et al., 2000] which is widely used in feature learning

[Pan et al., 2015; Wang et al., 2014]. By minimizing the
ranking loss on the set of triplets T , the relative distance re-
lationship on the feature representations of frames in the em-
bedding space is preserved to present the temporal coherence.
Specifically, for each triplet 〈fi, f+j , f−m〉, we aim to make the
embedding features in close proximity of fi and f+j , and si-
multaneously obtain a large distance between fi and f−m.

The triplet ranking loss is convex and its gradients with
respect to fi, f

+
j , f

−
m are

∂`triplet
∂fi

= (2f−m − 2f+j )× I
D(fi,f+j )−D(fi,f−m)+1>0

∂`triplet

∂f+j
= (2f+j − 2fi)× ID(fi,f+j )−D(fi,f−m)+1>0

∂`triplet

∂f−m
= (2fi − 2f−m)× I

D(fi,f+j )−D(fi,f−m)+1>0

. (3)

The indicator function IC = 1, if the condition C is true (i.e.,
D
(
fi, f

+
j

)
−D (fi, f

−
m) + 1 > 0); otherwise IC = 0.

To learn and construct this embedding space, we incorpo-
rate the triplet ranking loss as a regularization in learning the
mapping function.

Triplet Sampling. When generating triplet set T from
the temporal sequence, one natural way is to randomly se-
lect triplets according to the temporal structure based on the
assumption that the adjacent frames should be semantical-
ly similar while the non-adjacent frames (i.e., with a large
time interval) are more likely to be dissimilar in semantics.
However, in practice, due to camera shaking or movement,
there usually exists the situation that the adjacent frames may
have totally different semantics. In addition, it is also pos-
sible to find the similar semantics between two frames even
with a long time interval. To avoid injecting negative triplets
with noise into our feature learning framework, we propose
a triplet sampling mechanism from the viewpoint of mutu-
al reinforcement between temporal structure and visual rela-
tionships among frames. Given a query frame fi, we firstly
generate a ranking list for all the frames in this temporal se-
quence based on their Euclidean distances to fi. Then, only
the frames which are both temporally close to the query frame
and visually similar at the top of the ranking list will be se-
lected as positive frames f+j . Meanwhile, we choose the neg-
ative frames f−m which are distant from the query frame and
visually dissimilar at the bottom of the ranking list. Note that
during each update process of training, the distance ranking
list need to be updated based on the features from pervious
iteration to generate evolved triplet set.

Therefore, with this rigorous triplet sampling mechanism,
the triplet set is collected by considering both temporal struc-
ture and visual relationships among the video frames. Our
model is benefited from this mechanism to better learn video
representations.

3.3 Graph Structure Preservation
Graph structure preservation can be regarded as another reg-
ularization indicating that similar points in the original space
should be mapped into the positions closely in the embedding
space. Technically, we view the holistic structure of video



as a graph constructed on the frames in the whole video se-
quence. The estimation of the underlying graph structure can
be measured by the appropriate pairwise similarity between
the video frames, which is given by:

`graph =

N∑
i,j=1

Sij ‖fi − fj‖22, (4)

where S ∈ RN×N denotes the affinity matrix defined on the
entire frames among the temporal sequence. Under the graph
structure preservation criterion, it is reasonable to minimize
Eq. (4), as it will incur a heavy penalty if two visually similar
frames are mapped far away in the learnt embedding space.

There are many ways of defining the affinity matrices S.
Inspired by [Fang and Zhang, 2013], the elements are com-
puted by Gaussian functions in this work, i.e.,

Sij =

{
e
−
‖f̃i−f̃j‖22

σ2 if f̃i ∈ Nk(f̃j) or f̃j ∈ Nk(f̃i)
0 otherwise

, (5)

where σ is the bandwidth parameter. It should be noted that
f̃i denotes the learnt frame-level feature from pervious iter-
ation in training and Nk(f̃i) represents the set of k nearest
neighbors of f̃i.

By defining the graph Laplacian L = D−S, where D is a
diagonal matrix with its elements defined as Dii =

∑
j Sij ,

Eq. (4) can be rewritten as

`graph = tr(F>LF), (6)

and its gradient with respect to F is

∂`graph
∂F

= 2LF. (7)

By minimizing this term, the inherent structure between
frames can be preserved in the learnt embedding space. We
additionally include this regularizer in our framework.

3.4 Formulation
The overall objective function integrates both the triplet rank-
ing loss in Eq. (2) on the triplet set T and the graph structure
preservation in Eq. (6). Hence we get the following overall
loss objective

` = λ
∑
t∈T

`
(t)
triplet + (1− λ)`graph, (8)

where λ ∈ [0, 1] is the tradeoff parameter.
With this overall loss objective, the crucial goal for it-

s optimization is to learn the mapping function f . In-
spired by the success of DCNN on feature learning for im-
age [Krizhevsky et al., 2012; Wang et al., 2014; Feng et al.,
2016] and video [Ramanathan et al., 2015; Zha et al., 2015;
Gan et al., 2015] tasks, we employ a deep neural network ar-
chitecture to learn the feature representation for video frames.
Specifically, the embedding feature representation is leant on
top of the fully connected fc6 layer of AlexNet [Krizhevsky
et al., 2012], which is pre-trained on ImageNet ILSVRC12
dataset [Russakovsky et al., 2014]. In the training stage, to
solve the optimization according to overall loss objective in

Algorithm 1 The Training of TGL Layer

1: Given a tradeoff parameter λ.
2: Forward Pass:
3: Fetch input batch F with N sample frames in one video.
4: Generate selected triplet set T .
5: Compute all the triplet ranking losses on T via Eq. (2).
6: Update affinity matrices S.
7: Compute graph structure preservation loss via Eq. (6).
8: Compute overall loss output with tradeoff parameter λ.
9: Backward Pass:

10: Compute gradient w.r.t input for triplet ranking loss via Eq. (3).
11: Compute gradient w.r.t input for graph structure preservation

via Eq. (7).
12: Backward the overall gradient w.r.t input with tradeoff param-

eter λ to lower layers.

Eq. (8), we design a temporal and graph-structured loss (T-
GL) layer on the top of fully connected fc6 layer in AlexNet.
It is also worth noticing that we use L2 normalization layer
to normalize the output of fc6 layer and then feed the normal-
ized results into our TGL layer. The TGL layer does not have
any parameter. During learning, it evaluates the model’s vio-
lation of two generic priors of temporal coherence and graph
structure preservation, and back-propagates the gradients to
the lower layers so that the lower layers can adjust their pa-
rameters to minimize the overall loss. The training process of
TGL layer is given in Algorithm 1.

4 Experiments
We evaluate our video representation by conducting three
video recognition tasks (retrieval, classification, and highlight
detection) on two popular video datasets, i.e., Columbia Con-
sumer Videos (CCV) [Jiang et al., 2011] which is a bench-
mark of consumer video retrieval and classification tasks, and
YouTube Highlight [Sun et al., 2014] which is an uncon-
strained first person video dataset for highlight detection.

4.1 Dataset and Settings
CCV. CCV dataset contains 9, 317 videos collected from Y-
ouTube. It consists of 20 semantic classes including popu-
lar events, e.g., “birthday party,” “cats,” “playground,” and
“graduation ceremony.” For the video retrieval task, given a
test query frame, the task is to estimate the similarity between
each frame and query frame measured on their learned rep-
resentations. Furthermore, for each query frame, we order
all the frames based on the similarity scores. In the experi-
ments, we use a subset of 5, 803 videos whose durations are
at least 25 sec with 2, 903 videos for training and 2,900 videos
for testing. The ground truth data are carefully generated on
the testing videos. Specifically, following [Goroshin et al.,
2014], videos in the test set are automatically segmented into
scenes by detecting large L2 changes among adjacent frames.
We randomly select 2,000 scenes from testing videos and use
the middle frame from each scene as the test query frame.
The entire pool for retrieval consists of 1.13 million sampled
frames from both the training and testing videos. For each
test query frame, only the temporal neighbors from the same
scene are defined as semantically similar samples. The oth-
er frames in the pool are all used as dissimilar ones w.r.t the



Method VR VC VHD
fc6 67.52% 62.82% 42.89%
fc7 64.89% 62.18% 42.41%
TE [Ramanathan et al., 2015] 68.42% 63.15% 44.98%
Temporal Coherence (TC) 70.24% 64.27% 47.06%
Graph Structure (GS) 70.26% 63.36% 46.02%
TGFL 72.13% 65.26% 48.08%

Table 1: MAP of different methods for Video Retrieval (VR), Video
Classification (VC), and Video Highlight Detection (VHD) tasks.

test query frame. For the video classification task, we use the
same train/test splits as retrieval task (i.e., 2, 903 videos for
training and 2, 900 for testing).

YouTube Highlight. This dataset is collected from Y-
ouTube for six domains including “skating,” “gymnastics,”
“dog,” “parkour,” “surfing,” and “skiing.” Each domain con-
tains about 100 videos with various lengths. The total du-
ration is 1, 430 minutes. After removing unvalid and no-
highlight videos, the dataset is partitioned into two parts: a
training set with 352 videos and a testing set with 110 videos.
For each testing video, the ground-truth highlighted moments
are human labeled on Amazon Mechanical Turk.

Settings. In the experiments, we uniformly pick up three
frames every second and compose N = 256 frames of each
video. For a long video, only the first selected N frames
are represented as a temporal sequence. All the positive
frames are selected from the adjacent frames within one sec-
ond around the query frame. The k nearest neighbors pre-
served in Eq. (5) and tradeoff parameter λ in Eq. (8) are
both determined by using a validation set for each task. Fi-
nally, for both retrieval and classification tasks, k = 10 and
λ = 0.4. For highlight detection task, we set k = 8 and
λ = 0.5. In video retrieval task, we retrieve the frames
in the whole dataset according to their cosine similarities
w.r.t the query frame measured on our learned representa-
tion. In video classification task, following [Ramanathan et
al., 2015], we uniformly sample four frames per video and
perform “mean pooling” process over all sampled frames to
generate the video representation. The linear Support Vector
Machine (SVM) is adopted to classify the videos. In video
highlight detection task, following the pairwise ranking mod-
el proposed in [Sun et al., 2014], we utilize the same linear
ranking SVM to rank and detect video highlights.

4.2 Compared Methods
In video retrieval task, we use mean average precision (MAP)
to evaluate the retrieval quality for test query frames. For
video classification task, following [Jiang et al., 2011], the
average precision (AP) is used to measure performance for
each class and MAP is adopted to report the overall perfor-
mance. For highlight detection task, within each video, the
best method should first detect the ground truth highlighted
moments rather than other moments. Hence, we also calcu-
late AP of highlight detection for each testing video and use
MAP to evaluate the learnt feature to highlight detection.

To evaluate our model, we compare the following methods
on retrieval, classification, and highlight detection tasks:

(1) fc6 and fc7: feature extracted from the top of the fully
connected fc6 or fc7 layer in AlexNet pre-trained on Ima-
geNet ILSVRC12 dataset [Russakovsky et al., 2014].

(2) Temporal Embedding (TE) [Ramanathan et al., 2015]:
feature learning in a margin ranking loss based embedding
framework to make the contextual representations in close
proximity to the target frame and simultaneously dissimilar
to other negative frames in a pairwise manner.

(3) Temporal and Graph-structured Feature Learning (T-
GFL) based on our proposal presented in Algorithm 1. Two s-
lightly different runs are named as Temporal Coherence (TC)
and Graph Structure (GS), which consider individual tempo-
ral coherence or graph structure preservation in the overall
objective (Eq. (8)), respectively.

4.3 Performance Comparison
Evalution of video retrieval. Table 1 shows the MAP perfor-
mances of six runs on three tasks. Overall, for video retrieval
task, our TGFL consistently outperforms the other runs. In
particular, the MAP of TGFL can achieve 72.13%, which
makes the improvement over fc6 by 6.8%. Furthermore, T-
GFL can be further improved with large quantities of unla-
beled videos, which are largely available and freely accessi-
ble on Web. There is a clear performance gap between the
two runs TC and TE. Though both runs involve utilization of
temporal context, they are fundamentally different in the way
that the learnt representations of TE are as a result of em-
bedding the target frame by its contextual representations in
a pairwise manner, and TC is by characterizing relative tem-
poral relationships through a set of frame triplets. The results
basically indicate the advantage of learning video represen-
tations by exploiting temporal coherence. Moreover, TGFL
by further preserving graph structure is superior to TC, which
indicates that the two principles of temporal coherence and
graph structure reinforce each other in feature learning. Fig-
ure 3 further illustrates the top eight retrieved video frames in
response to query frame based on the learnt representations
by different methods. We can clearly see that the proposed
TGFL gets more satisfying ranking results and retrieves five
relevant video frames in the returned top eight frames.

Evaluation of video classification. The MAP perfor-
mances for video classification task are reported in the third
column of Table 1. Our TGFL still consistently outperforms
other baselines, which makes the improvement over fc6 by
3.9%. The performance gain can be attributed to the video
feature learning by exploiting both temporal coherence and
graph structure simultaneously.

Evaluation of video highlight detection. The fourth col-
umn in Table 1 shows the MAP values of different approach-
es for video highlight detection task. Overall, TGFL con-
sistently exhibits better performance than other approaches.
Compared to fc6, TGFL raises the MAP from 42.89% to
48.08%, making the improvement by 12.1%. Similar to the
observations in video retrieval and classification tasks, TC ex-
hibits better performance than TE, but shows worse perfor-
mance than TGFL. Figure 4 shows eight segments uniform-
ly sampled from a video of “surfing,” “parkour,” “skating,”
and “gymnastics.” Each segment is represented by one sam-
pled frame. As illustrated in the figure, the eight segments
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Figure 3: Examples showing the top eight video frames retrieval
results based on the learnt representations by different methods in
response to query frame. In each row, the first frame with a red
bounding box is the query frame and the similar video frames in the
retrieved list are enclosed in blue bounding boxes.
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Figure 4: Examples of segments ranking from low (right) to high
(left) according to our predicted highlight scores for “surfing,”
“parkour,” “skating,” and “gymnastics” categories.

are ranked according to their predicted highlight scores on
the learnt representations by our TGFL and we can easily see
that the ranking order reflects the relative degree of interest
within a video.

4.4 Effect of the number of nearest neighbors k
In order to show the relationship between the performance
and the number of nearest neighbors, we conducted experi-
ments to evaluate the performance of our TGFL framework
with the number of nearest neighbors in range of {5, 6, 7, 8,
9, 10, 11, 12}. The MAP with different number of nearest
neighbors are shown in Figure 5. As illustrated in the figure,
TGFL achieves the best results when we choose Top-10 near-
est neighbors on video retrieval and classification tasks while
the optimal k = 8 in video highlight detection task. Further-
more, the performance difference by using different number
of nearest neighbors is within 0.01 on all three tasks, which
basically verifies that our TGFL has a good property of be-
ing affected very slightly when choosing different number of
nearest neighbors.

4.5 Effect of the tradeoff parameter λ
A common problem with multiple regularization terms in a
joint optimization objective is the need to set the parameter-
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Figure 5: The MAP performance curves with different numbers of
nearest neighbors on (a) video retrieval and video classification and
(b) video highlight detection, respectively.
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Figure 6: The MAP performance curves with different tradeoff pa-
rameter λ on (a) video retrieval and video classification and (b) video
highlight detection, respectively.

s to tradeoff each component. In the previous experiments,
the tradeoff λ is optimally set in order to examine the per-
formance of λ on video retrieval, classification, and highlight
detection irrespective of the parameter influence. We further
conducted experiments to test the sensitivity of λ towards the
three video recognition tasks.

Figure 6 shows the MAP performance with respect to dif-
ferent values of λ. We can see that all the performance curves
are smooth when λ varies in a range from {0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The performances fluctuate
within the range of 0.02 on three tasks. Thus, it is not sen-
sitive to the change of the tradeoff parameter. More impor-
tantly, the fusion of temporal coherence and graph structure
by any tradeoff weights consistently leads to a performance
boost against individual component (λ = 0 or λ = 1.0). The
result again confirms the advantage of exploiting both prin-
ciples of temporal coherence and graph structure which are
complementary for feature learning.

5 Conclusions
We have showed that learning a good video representation
should take both the local temporal coherence from adjacen-
t video frames and holistic intrinsic structure among all the
frames into consideration. We present a temporal and graph-
structured feature learning approach to learn the intrinsic rep-
resentation of video frames by exploiting such context in-
formation. We also validate the effectiveness of the learned
representation through extensive experiments on three video
recognition tasks. Our future works include: 1) using RNN
to better model the temporal coherence, and 2) investigating
different pooling schemes for transferring our frame repre-
sentation to video-level representation.
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